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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-461

SOME DIVERGENCE CHARACTERISTICS OF LOW-ASPECT-RATI0

WINGS AT TRANSONIC AND SUPERSONIC SPEEDS

By Donald S. Woolston, Frederick W. Gibson, and

Herbert J. Cunningham

SUMMARY

The problem of chordwlse, or camber, divergence at transonic and

supersonic speeds is treated with primary emphasis on slender delta

wings having a cantilever support at the trailing edge. Experimental

and analytical results are presented for four wing models having apex

half-angles of 5 °, i0 °, 15 °, and 20 ° . A Mach number range from 0.8

to 7.3 is covered.

The analytical results include calculations based on small-aspect-

ratio theory, lifting-surface theory, and strip theory. A closed-form

solution of the equilibrium equation is given, which is based on low-

aspect-ratio theory but which applies only to certain stiffness dis-

tributions. Also presented is an iterative procedure for use with

other aerodynamic theories and with arbitrary stiffness distribution.

INTRODUCTION

The current trend toward the use of thin 3 low-aspect-ratio, all-

movable control surfaces on aircraft and missiles has introduced the

possibility that divergence rather than flutter may be the primary

aeroelastic problem for such surfaces. This possibility results from

the fact that on all-movable surfaces the forward portion of the surface

may be supported from the rear rather than from the side. The resulting

chordwise divergence is characterized by a camber type of deformation

rather than a twisting or torsion of the wing span. The present paper

considers the problem of chordwise divergence at transonic and super-

sonic speeds and is principally concerned with the divergence of slender

delta wings having a cantilever support at the trailing edge.

The problem of chordwise bending in two-dimensional supersonic

flow has been treated by Blot (refs. i and 2) and by Miles, according

to reference 3. The three-dimensional case has also been examined by

Miles (ref. 3) and in the more recent investigations of references 4
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and 5. The chordwise divergence of an all-movable control at transonic
and supersonic speedshas been treated in reference 6.

The purpose of the present paper is to give the results of a
reexamination and extension of the material presented in reference 5
which had only limited distribution. The authors of this paper, who
collaborated in preparing the results of reference 5, have obtained
additional results on the basis of llfting-surface theory for super-
sonic flow. The investigation includes the development of an iterative
solution to the equilibrium equation applicable to divergence studies
of configurations with arbitrary stiffness distribution and, also, a
closed-form solution applicable to certain special distributions of
stiffness. Experimental results are presented for a series of canti-
lever delta wings having apex half-angles of 5° , lO°, 15°, and 20° over
a Machnumberrange from 0.8 to 7-3. Comparative divergence calcula-
tions for these cases based on small-aspect-ratio theory, lifting-
surface theory, and strip theory are made.

SYMBOLS

Aij

anm

Bij

N

c_

Co

[D]

E, E(x)

F(x)

Fj

h

curvature influence coefficient, (ft-lb) -1 (eqs. (30))

weighting factor in series form of Ap(x,y) (eq. (3))

slope influence coefficient, lb -I, (eqs. (37))

matrix defined by equation (42), ft 2

matrix defined by equation (46), ft

torsional spring constant, ft-lb/radian

chord at wing plane of symmetry, ft

differentiating matrix, ft -1 (see _q. (44))

modulus of elasticity, lb/sq ft

local aerodynamic force per unit span, lb/ft

concentrated aerodynamic load at _j, lb

local vertical displacement, ft
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_(x)

Jr, J_

section moment of inertia, ft 4

integrating matrix, ft (see eq. (32))

Bessel function of the first kind of order

respectively

v and _,

K, K(M,k,x-x',y-y')

Ko

KI, K 2

k

k I

h=, _(_,y)

M

MB(X)

q

%

sj

S

t

t o

V

W

x,y,z,x',y'

kernel function of integral equation, ft -2

section moment of inertia constant (eq. (16))

divergence constants, defined by equations (25) and (48),

respectively

reduced frequency

weight constant (see eq. (52))

lift function in series form of Ap(x,y)

Mach number

local bending moment, ft-lb

dynamic pressure, pV2/2, lb/sq ft

dynamic pressure at divergence, lb/sq ft

area of jth wing segment, sq ft

local wing half-span, x tan e, ft

local thickness, ft

thickness at midspan of trailing edge, ft

velocity, fps

wing weight, lb

Cartesian coordinates, ft (see fig. l)

(eq.(3))

xi,x j chordwise coordinates of centers of ith and Jth segments, ft
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Xp = Co_ p

_=_-i

Ap(x,y), Ap(x',y')

Ax

E

8

Z

I_ : 3/(3-n)

v --n/(3-n)

_j

_p

IILK

II(n_j)

local pressure difference, ib/sq ft

chord of wing segment, ft

apex half-angle (see fig. l)

angular spanwise variable defined by equation (14)

characteristic parameter (see eq. (20))

dimensionless chordwise variable_ x/c 0

dimensionless chordwise coordinat;e of midpoint of jth

segment, xj/c 0

dimensionless chordwise coordinate of wing support station

definite integrals in the lifting-surface-theory problem

(see eq. (4))

integrals defined by equation (8), ft 2

fluid density, slugs/cu ft

material density, ib/cu ft

Superscripts:

n, m denote powers of the chordwise a_d spanwise variables,

respectively, in the expressio_ for the thickness distribu-

tion (see eq. (12))

Matrix notation:

[] square matrix

5
8

2
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()

row matrix

column matrix

diagonal matrix

L
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FORMULATION OF THE PROBLEM

The Equilibrium Equation

The problem at hand is that of the divergence of a delta-wing plan-

form, shown in figure l, which is restrained along a section normal to

its root chord at some distance Xp from its apex. The wing is con-

sidered to be capable only of chordwise bending - that is, bending of

the mean camber line. The effect of spanwise variation of bending would

be expected to be small for the narrow models with the thickness distri-

butions studied herein. The wing in its neutral position is assumed to

lie nearly in the xy-plane of an x,y,z coordinate system which moves

with the planform in the negative x-direction at uniform velocity V.

It is assumed that the wing, so restrained, will obey the mechanics of

a simple beam and that the only external forces acting upon it are aero-

dynamic forces which arise when it is perturbed from its neutral posi-

tion. Under these conditions the state of equilibrium may be expressed

by the following differential equation:

(x) I(x) : F
dx 2 dx2J

(1)

where E(x) is the modulus of elasticity, l(x) is the section moment

of inertia, h is the vertical displacement of any section from its

neutral position, and F(x) is the aerodynamic force acting at

station x.

The present study includes several stiffness or thickness distribu-

tions, leading to different forms of l(x), and considers various linear

aerodynamic theories, from which are obtained different forms of F(x).

Some examples are treated in which the thickness distribution is

described by simple analytic functions of the chordwise coordinate, but

consideration is also given to the possibility of an arbitrary thickness
distribution.



Whencertain analytical expressions are chosen to represent the
thickness distribution and are used in combiiLation with the aerodynamic
forces given by small-aspect-ratio theory or strip theory, closed-form
solutions of the equilibrium equation can be obtained. For other combi-
nations of thickness distribution and aerodynamic forces an iterative
procedure is developed. Before discussing the methods of solution, the
forms of F(x) and I(x) to be employed are considered.

The Aerodynamic Force F(x)

The forms of F(x) to be employeddepend on the Mashnumberrange
to be dealt with and on the apex angle of the structure. If the wing is
very slender and if the Mach lines lie well _head of the leading edge
(_ tan _ << i), small-aspect-ratio theory maybe used. For Maehnumbers
up to that for which the leading edge becomessupersonic, lifting-surface
theory based on kernel-function procedures is available. If the leading
edge is supersonic and if spanwise variations of deflections are neg-
lected, the loading based on linear theory is given exactly by strip
theory, which for sufficiently high Mashnumberscorresponds to first-
order piston theory.

In the present calculations, small-aspect-ratio theory and lifting-
surface theory are used at subsonic speeds, and small-aspect-ratio
theory, lifting-surface theory, and strip theory are used at supersonic
speeds. Both small-aspect-ratio theory and strip theory are used for
comparison throughout the range of supersonic Machnumbersconsidered
even though the Machnumberrange in which the theories are valid is
exceeded.

Small-aspect-ratio theory.- An expression for the aerodynamic force

given by small-aspect-ratio theory for the case of steady flow can be

obtained directly from the work of Jones (ref. 7) or from Garrick's

results for unsteady flow (ref. 8). The force can be expressed in the

following form:

L

8

9
2

f x tan Sld2h _x2tan2e__ y2 + dhd_F(x) : -2 v 2
x tan ¢\dx _ x tan2c 21dY

_x2tan2c _ y

or

F(x) =-2 q tan2 ±fx
dx _ _xx/

(2)
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where

1 2
q = _V

Lifting-surface theory.- In order to obtain an expression for the

force F(x) based on lifting-surface theory, it is necessary to deter-

mine first the chordwise and spanwise distribution of pressure acting

on the surface. For this purpose use is made of an integral equation

which, in steady flow_ relates the slope of the wing surface to the

pressure distribution.

The integral equation can be written as

dh

dx
1  p(x',y')K(M,k,x-x',y-y')dx'dy'

4_pV 2 JJA

where K(M,k,x-x',y-y') is the kernel function. The quantity E/4_pV 2

is the mathematical expression for the downwash induced at any point

x_y by a unit force acting at any other point x'jy'. The area A over

which the integration extends is the portion of the wing in which a

pressure pulse must occur in order to induce vertical velocity at the

specified point x,y. In subsonic flow A corresponds to the entire wing

surface; in supersonic flow A is that portion of the surface bounded

by the planform edges and the forward Mach cone from the point x,y. A

numerical method of solving the integral equation for the subsonic case

is described in reference 9; the procedure for the supersonic case is

based on similar techniques but involves differences in the form of the

pressure distribution and in the kernel of the integral equation.

An approximate solution to the integral equation involves expressing

the unknown pressure distribution as a sum of chosen modes of lift func-

tions Lnm (of forms appropriate to the planform and Mach number range

under consideration), each weighted by a constant coefficient to be

determined. The following expression is employed:

(3)

Through the use of this expression the integral equation can be repre-

sented as a summation of definite integrals and can be solved by numeri-

cal methods. The following matrix form of the integral equation can

then be written:

. (4)



where the elements of IILK represent the definite surface integrals

of the products of the functions Lnm and the kernel function K and

the elements dh represent the wing slope at a number of selected
dx

points on the wing surface. Equation (4) may therefore be regarded as

a set of simultaneous equations from which the values of the weighting

factors anm can be obtained once the definite integrals have been

evaluated. (The evaluation of these integrals constitutes the major

task in the kernel-function procedure and is accomplished by use of the

methods and the computing program described in reference 9; it is not

pertinent to the present discussion, however, and need not be considered

herein.)

A premultiplication of each side of equalion (4) by the inverse

matrix _ILK ] -i gives the expression

anm = I (7)

which can be used to obtain values of the weighting factors anm for

any prescribed slope distribution. Once these weighting factors anm

have been determined, the pressure Ap(x,y) associated with the pre-

scribed slope distribution is defined by equation (3).

For use in the influence-coefficient procedures to be described

subsequently_ it will be necessary to obtain the forces acting on each

of the several segments (fig. 2) into which the wing is divided; this

will require an integration of the pressure distribution over each

segment. The force on the jth segment Fj may be expressed as

L

5
8
2

Fj = //S Ap(x,y)dx dy
J

or, applying equation (5),

whe re

(6)

(7)

zz(J) ffs= Lnm(X,y)dx dy

J

(8)

and where Sj denotes the area of the Jth segment.
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Strip t_!eQry_.- If the leading edge i':_supersonic and if there J s

no spanwise variatio_ of' w_ng deflection it, the aerodynamic loading

is given exactly (within the limitations of linear theory) by strip

theory. (See, for e×ample, refs. I0 and ]i_) _e force F(x) for

use _n equation (]) is expressed as

or

It H>> _, F(×)

2pV 2 Fx tan e d_h_h
F(x) dy

@ •J-x tan e dx

F(x) .... x d! (9)
@ dx

can be expressed approximately as

F(x) -- 8q x tan e d_h_h (i0)
M dx

which is the result given by piston theory (ref. 12) for the case of

zero t.hic_less.

Area Moment of Inertia l(x)

The term l(x) in equation (i) is the section area moment of

inertia and is therefore directly related to the thickness by the

expression

,x tan

tan e

t/2 x tan e

12 x tan e

t3dy (ii)

where e is the apex half-angle.

As noted previously, it has been found that, _en certain forms

of the thickness distribution are used in combination with aerodynamic

forces based on small-aspect-ratio theory or strip theory, closed-form

solutions of the equilibrium equation are possible. A fairly general

form of the thickness distribution which leads to an exact solution is

the following exoression:
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t " x ,n/3/ y21m/12 (12)

where tO is the thickness at the point X=co,Y--O and where m and

n are positive integers. This expression for t contains a chord-

wise variation of thickness given by the term in _ and a spanwise
cO

variation in thickness given by the term involving _. It should be
S

remarked that for n > 3 the thickness distribution is characterized

by a cusp at the apex so that at the apex the leading edge is infinitely

sharp. Such thickness distributions are not considered herein since

linear beam theory would not be expected to apply.

In order to proceed toward an expression for the moment of inertia

I(x), equation (12) may be substituted into equation (ll) to obtain

tO3fx _n /oS(1 - _-21m/4dy2j: 7- F°j
(13)

L
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where s = x tan e is the local wing half-sl:an and where symmetry

about the center line is assumed. The integral in equation (13) can

be expressed conveniently in terms of the gaz_na function and for this

purpose"there is introduced the angular variable 8 defined as

8 = sin -I [ (14)
S

in terms of which equation (13) becomes

tO31x _n fo, /2 (2+m)l(x) = --_--t_--_O) x tan C (CO,<,e) /2de (15)

If the integral in equation (15) is denoted by KO, it may be shown

that

F_/2(cos e)
= dO

(16)
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where P denotes the gamma function. The inertia term

then be expressed as

to3f x _nx

I(x) = K0 -_-_OJ tan e

I(x) may

(17)

Numerical values of the section moment-of-inertia constant K0 for

several values of m are given in table I. Included with table I are

sketches of the sections to which the various values of m pertain.

CLOSED-FORM SOLUTIONS OF THE EQUILIBRIUM EQUATION

Exact solutions of the equilibrium equation can be obtained for

a few special choices of the section area moment of inertia I(x)

given by equation (17) and for the aerodynamic-force distributions

F(x) given by small-aspect-ratio theory or by strip theory. These
solutions can be used to assess the accuracy of the more generally

applicable iterative procedures to be developed. Before considering
these solutions it is convenient to arrive at a nondimensional form of

the equilibrium equation by introducing the change of variable

so that equation (17) becomes

x = Co_

I(co_ ) - c04Ko#tol3_n+itan e

6 \Co/

With this expression for I(co_), equation (1) may be written in the

desired nondimensional form as

_--_tol3tan ¢ (Co_) --F(Co_ )

6 Co7
(18)

If the expression for F(Co_ ) given by small-aspect-ratio theory

(eq. (2)) is employed and if E(co_ ) is taken to be constant, equa-

tion (18) can be written as
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where

d2in+l d 1d_2 d_U d.%-_ = o
(19)

),,2= 12_q tan (_0)

Solutions to equation (19) will be obtained for values or n of 0 r i_.

2, and 5 for two types of wing mounting.

First, however, it is noted that a solution of equation (18) can

also be obtained, provided n = 3, when the aerodynamic-force distribu ....

tion is given by strip theory (eq. (9)). In this event equation (18)
becomes

d2 ]E{_ [4 d2hl _ dh

o_" taking E(co[ ) as a constant and performir:_ the indicated dJ fferen-

tia.tions of the first term results in

%4 __d4h + 8%_ ---d3h + 12[ 2 _d2h + A[ __dh = 0

d_4 d[3 d[2 a[

in which

48q

This fore of the equilibrium equation is of th_ form o_t'Cauchy's _-qu.i-.

dimensional linear differential equation, the _olution of which is

discussed, for example, in section 1.6 of refe:,ence 13.
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Winc, Based ob omu, l_-Asp_c t--R>_tio Ti_eor 5.

[in <_:-,icr <o ,:um_l.;lo%e t_:<. f'oi_u]<_t, ior <.,!_ -t.he divergence probL_n: .is

<_:press,ad by e_luation (19)_ ii is necessary Lo impose certain condi-

tioms at the ap<_x and at the point of suppoz'i,. Conditions to be impoi_ed

at, the apex Imply no bending moment or shear and are

h

lira _n+l d2h - 0 !

2 !
\

] im d l
\ d_2/

E-L

For _i,c t_"u.Llin6.,-e<i_ie.-co_H.Jlev, r,'U de].ta ,,.,'i_&{_%he 3onditions _c:,be

J_Ul:<_sod iml/!._< _]_a% thei:e is no displ&:_e, ment or olope at the built :n

edgo and arc

[dh \

{=±

_t ! rn--I da]:\ 2 2 di:

d _ _, d _L'_/: d

d[

d (b:-_i (_±"] .... _

This m:<,_ be rccoSnized as a speeia.] form of ]3esse]'_: equation° (S,ae_
/

£or example, eq. (129e)_ p. 167_ of ref. 15,) If' n r >_ a _c] ;tion

uric]eL the. e!)ex ,':onditi;:r:s imposeA b'o eqN:_.i!./_n (2.1.) is found to i)e
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(25)

where Jw is the Bessel function of the first kind of order v

(v = n/(5 - n)) and C 1 and C 2 are con_;tants. (If n = 5, the

problem is soluble as an equidimensional equation (sec. 1.6, ref. 13).

From equations (22) and (23), the eigenvalues for the cantilevered case

(n _ 3) are the roots of

(24)

In order to assess the accuracy of the iterative procedures to be

discussed subsequently, solutions to the differential equations have

been obtained for constant E and for a thickness distribution defined

by setting m = 0 in equation (12) so that

t = to(_)n/3

and for n = O, i, 2, and 3. For n = O, 3., and 2 the roots of the

Bessel functions in equation (24) and the corresponding values of h

are as follows:

n
v -

3 - n

1/2

2

Equation

in k

Jl/2(?,) : o

J2(27,) = o

Root of

Jv = 0

2.4048

5.1356

3.6072

2.5678

For n = 3 there is found a corresponding value of k of 1.499. The

quantity _2 in equation (19) may be used to form a convenient diver-

gence constant K 1 defined as

k 2 qd t_u_ ¢

- 3 (2_)

K1- 12_ EK0(_)

Values of K 1 for the foregoing examples are listed in table II.
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Exact Solution for the All-Movable Control

Based on Small-Aspect-Ratio Theory

An alternative configuration which might be treated is the all-

movable control attached to a torque rod at _ = _p where _p is the

chordwise coordinate of the pitch axis and is referred to cO as unit

length. For this case the conditions to be imposed at the section of

support would be

_(_p) _coaI_p

(26)

where

1

MB(_p)= °o2 _o (_- _p)r(_)d_

or, from equation (2),

MB(_p) =-2_q tan2cc02 _01(_- _p) d_(_ 2 _)d_
(27)

is the total aerodynamic moment about the pitch axis _ = _p and

where C_ represents the torsional spring constant of the torque rod.

In order to obtain an expression for the eigenvalues for the all-

movable control attached to a pitch spring, the expression for h

given by equation (23) must be substituted into equation (27); after

the resulting expression is integrated, the expression which defines

the eigenvalues is

[(1-_p)Jv(_j-_ J_(_n)l = 6CGJv[}_n(_p) (3-n)/2 ]

(28)

where _ : 3/(3 - n) and, as stated previously, v : n/(3 - n).
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I'[9]RAT!VE SOLUTIONS OF :_THE EQUILIBRIUM EQUATTON

The exact solutions of the equilibriu_ equations which were out-

lined in the preceding section are app]iicable on]_y to calculations

based on certain aerodyn_m_ic.-force representations and thickness dis-

tr._butions. For other cases it is necessary to seek an approximate

solution; in the present investigation an iterative procedure based on

influence co_'fficients iis _m_doyed.

No proof of convergence of the iterati_-e procedure is attempted°

Tn the calculations described in reference D for the case of an a]l-

movable control with the hinge axi._ not at the trailing edge_ some

difficulty with convergence was experienced in a few cases for which

the control surface was very stiff and the torque rod was very weak.

It was found_ however_ that by averaging th_ results of two successive

cjJcles of iteration and employing the average to start the next cycle

convergence could be obtained. No such difficulty was encountered in

the present calculations for the delta wing_ with a cantilever support

<_t the trail_ng edge.

Fom_ulations of the equilibrium equati)n based both on curvature

influence coefficients (eq. (_!)) and on sl)pe influence coefficients

(eq. (34)) will be given. Either formulati)n may be used_ the choice

being dictated by conveni_nce in obtaining she necessary stru<_tural

an<_ aerodynamic dai_.

Influence-Coe_fi_ient For_.s of the _quilibrium Equation

As is the usual practice_ the wing _s _onsidered to be made up of

a finite number of segments (fig. 2). In tle calculations for super-

sonic flow_ i0 segments were used and comparisons with exact results

(to be discussed in a subsequent section) slowed this mmlber of seg-

ments to be adequate. In the calculations _or subsonic flow_ first

i0 and then 16 segments were used; the addi _ional segments were added

near the apex between 0 and 0.3 chorS. _e results were not changed

by the addition of these segments.

The force acting on each segment is as ;umed to be concentrated at

the midpoint of the segment and the slope oi" curvature is measured

there. The analysis proceeds from the fundamental beam relation between

curvature and bending moment_ namely_

d2h

d2 El(×)
(29)

where MB(X ) is bending moment.
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Curvature equation.- For arbitrary distributions of stiffnessj

equation (29) can be used directly to formulate an iterative procedure

based on curvature influence coefficients. If Aij denotes the curva-

ture produced at x i by a unit load Fj at xj, there can be obtained

from equation (29) the relations

dg_hh1
dx2/x i x i - xj

Aij - Fj - E(xi)T(Xi) (xi > xj)

and

(30a)

Aij:o (xi<=xj) (3Ob)

Equations (30) are used to evaluate the curvature influence coefficients

Aij and also to provide the following matrix form of the equilibrium

equation:

(31)

The aerodynamic forces Fj acting on the various segments can be

expressed as functions of the curvature to obtain a form of the equilib-

rium equation which may be iterated until convergence upon a curvature

distribution is obtained. The manner of doing this for the various

aerodynamic theories is indicated in the next section.

Slope equation.- A matrix form of the equilibrium equation based

on slope influence coefficients may be obtained directly from equa-

tion (31) by the introduction of a suitable integrating matrix [Ii]

which gives the results

and

(32)

(33)
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where an element Bij denotes the slope produced at xi by a unit

load at xj.

A sample integrating matrix appropriate to the lO-segment system

and the trailing-edge-cantilevered models treated herein is given in

table III. Multiplying both sides of equation (31)by the matrix Jill

leads to the following expression:

(34)

L
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This expression provides the basis for iteration on the slope distribu-

tion for a structure with arbitrary stiffness.

For the special cases for which the thickness distribution is

specified by equation (12) and for which the material is homogeneous,

equation (29) can be integrated in closed folm to obtain an analytic

expression for the slope influence coefficients Bij. For such cases

I(x) is given by equation (17) in terms of the dimensionless variable

= x/c 0 as

l(x) = KOt03 (_)nco_ tan c (35)
6

By substituting this result into equation (3(a) the following expres-

sion is obtained for the curvature at _ du_ to an arbitrary load Fj

at _j where _ > _j:

6Fj

dx 2 KoEto3tan c (_) n+l

(36)

This result can be integrated to obtain the _ollowing expressions for

Bij for n = O, l, 2, and 3 and for _i _ @j:
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For n=O,

Bij -

(d_)_ i 6c 0

Fj KoEto3tan c
(1- _i + {J log _i) (37a)

n = l,

n -- 2,

BiJ = KoEto3tan c _j - log _i - _i

(Bi = -1 + --+J
KoEto-_tan c 2 _i 2

(37b)

(37c)

and n = 3,

(37d)

For _i < _j '

Bij = Bjj (38)

Solutions Based on Small-Aspect-Ratlo Theory

Equation (2) can be used to express the aerodynamic-force distribu-

tion given by small-aspect-ratio theory in terms of slope and curvature

as
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If the force is evaluated at xjj the center of the Jth segmentj and is

considered to be constant over the segment_ the matrix of aerodynamic

forces _FIi_ for use in the equilibrium e_ation may be then written

as

 2f 2q
ax + 2x _h (4O)

_j_ = -2_q tan2E _ij _d-_Jxj J(_xx

where _x is the chord of the (equal) segments.

Curvature equation.- For use in equation (31) it is desired that

Fj be expressed as a function of curvature only. For this purpose

equations (32) and (40) can be used to write

L
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 dx ,xJ
where

[Bll = tan2_I[xj2_ + 2_xj] [Ii]I

Substitution of equation (41) into equation (31) yields

(41)

(42)

(43)

which may be solved by iteration upon the curvature to obtain the value

of dynamic pressure at divergence.

Slope equation.- It is possible to obtain the matrix (Fj) of

equation (40) in a form which involves only the slope and which can

therefore be used with slope influence coefficients in equation (34).

For this purpose a differentiating matrix [D] is needed to yield
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(44)

A suitable differentiating matrix for use with the lO-point system of

the present study was obtained in reference 6 and is given in table IV.

The use of this differentiating matrix in equation (40) gives

(45)

where

[B2! = tan2c[[xj_[D] + 2[xj]]
(46)

Equation (45) may be substituted into equation (34) to obtain the fol-

lowing expression:

dh " dh
(47)

which may be solved by iteration upon the slope to obtain the value of

dynamic pressure at divergence.

Numerical results.- In order to help determine the accuracy of the

iterative procedure, solutions to equations (43) and (47) have been

obtained for the thickness distributions for which closed-form solutions

were obtained.

Values of the divergence parameter KI, equation (25), obtained

from a !O-station representation of the wing are compared in table II

with values from the closed-form solution and are seen to be in very

good agreement, which indicates that i0 stations are adequate. It is

noted that the force distribution, and consequently the divergence

parameter_ determined by low-aspect-ratio theory is independent of Mach

number.

One further check on the accuracy of the iterative solutions based

on partitioning the wing into discrete segments was carried out by

assuming a polynomial expression for the displacement that satisfied

the end conditions and by applying the method of Stodola and Vianello

(sec. 5.5, ref. 13) to the loading equation (18). The strip-theory
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representation of the aerodynamics was used.
of the loading, another convenient divergence constant
defined as

q

With this representation
K2 can be

(48)

Iteration on the loading equation with the p_lynomial expression for

the displacement led to a value of K2 of 60.594. Iteration on the

slope equation for the lO-segment, partitioned wing gave a value of

K2 of 60.241.

L
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Solutions Based on Strip Theory

The forces on the various wing segments given by strip theory,

equation (9), may be written for use in the slope-influence-coefficient

equation (34) as

{Fj} =- 82kxq_ tan ¢_j] _)xj_

the substitution of which in equation (34) yields

(49)

Alternatively, equation (32) may be used to express the forces in

ten_s of curvature as

<Fj_ =- 82xxq tan ¢_xj]_I1]_2_

Jxj
so that equation (_l) becomes

dx 2 /

8

----2_xq tan ¢[Aij]_xj_[Il___)xd2h j_

(5o)
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Either equation (49) or equation (50) may be iterated to convergence

to obtain the critical value of q. Results obtained for the flat-plate

delta wings of the present study are given in a subsequent section.

J

8

Solutions Based on Lifting-Surface Theory

The aerodynamic forces given by lifting-surface theory have been

used to develop an iterative solution of the equilibrium equation based

on slope influence coefficients. It could be readily modified for use

with curvature influence coefficients.

It is recalled that the pressure distribution over the wing is

given by a series expression with arbitrary weighting factors anm

which are defined by equation (5) for any specified slope distribution.

In concept, one uses equations (5) and (7) to obtain the forces Fj as

or

(51a)

,r i(J rzT 1-1fs  (51b)

and substitutes this result into equation (34). This provides a form

of the equilibrium equation upon which iteration to convergence can be

performed.

In practice, it is usually necessary to employ several steps in

each cycle of iteration. This is brought about by the fact that the

inverse matrix in equation (5) is developed for a particular array of

control points which do not_ in general, coincide with the midpoints

of the segments used in the iterative procedure. To perform one cycle

of iteration the following procedure is used: first, assume a set of

slopes at the control points and use these slopes in equation (5) to

obtain a set of weighting factors anm; next, use these weighting fac-

tors in equation (51a) to obtain the forces Fj_ and, finally, substi-

tute the values of the forces into equation (34) to obtain the slopes

at the midpoints of the segments. To begin the next cycle of itera-

tion, slopes appropriate to the control-point locations are sorted out

of the results of equation (34) and are used in equation (5), and so

forth. Usually_ convergence is obtained after about four or five cycles

of iteration.
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DIVERGENCE EFFICIENCY OF A CANTILEVER DELTA WING

As a matter of interest it is noted thal; one can determine the

thickness distribution of the family of distributions expressed by

equation (12) for a solid cantilever delta wing that will produce the

highest dynamic pressure at divergence for a given total weight.

The weight W of a solid delta wing is found by integrating the

thickness distribution and combining the result thus found for the

volume with the density _ of the material to give an expression of
the form

W = kl_t0c02tan £ (52)

where the form of the constant kI depends on the form of the thick-

ness distribution. This result may be used together with the closed-

form result for the divergence parameter given by equation (25) to

obtain the expression

qd KI EE0

W3 k13 _3c09tan4e
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Expressions of the same general form are obtained from the iterative

solutions and from the various aerodynamic theories.

_W3 obtained with low-aspect-ratio theory and withValues of

piston theory are shown in figure 3 for the thickness distribution

given by equation (12) for m = O. The values of qd/W 3 have been

normalized to the value for the constant-thickness wing (n = 0). The

thickness distribution for maximum mass efficiency could be determined

by variational procedures; however, the maximum value of _W3 and

the associated thickness distribution would rot differ appreciably from
the results for n = i.

APPARATUS AND TEST_[

Models

A series of delta-wlng models of constant thickness and of apex

half-angles of 5°, i0 °, 15 ° , and 20 ° were constructed. A sketch of the

various model configurations is presented in figure 4. The thickness
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at the base of the delta wing before attachment to the wind-tunnel sting

was increased to simulate cantilever base boundary conditions with a

minimum of aerodynamic interference. For the transonic tests_ two

model configurations were used. Both configurations had a lO-inch chord

with one model constructed of O.048-inch-thick aluminum alloy and the

other of O.0385-inch-thick aluminum alloy. For the supersonic and

hypersonic tests, wings of O.048-inch-thick aluminum alloy with a
6-inch chord were used.

L

5
8

2

Wind-Tunnel Tests

Transonic tests.- Divergence data were obtained at transonic speeds

with the models mounted on a sting in the Langley 2-foot transonic

aeroelasticity tunnel with Freon-12 as a test medium. The tunnel Mach

number was held constant and the test-section density_ and hence dynamic

pressure, was slowly increased until divergence occurred. Occasional

adjustments in the sting angle of attack were required to correct for

changes in tunnel-flow angularity so that the model would remain at zero

lift until the divergence dynamic pressure was reached. Smallj rela-

tively high-frequency oscillations of predominantly the apex region of

the delta wing usually occurred at low dynamic pressure and continued

intermittently as the dynamic pressure was increased up to the diver-

gence condition. These oscillations were believed to be associated with

flow separation or with flow irregularities in the tunnel stream and

with low structural damping of the models. The divergence dynamic pres-

sures were very sharply defined and were marked by one or two large

excursions of the tip of the model Just prior to divergence. The high-

frequency oscillations of the tip region usually continued intermit-

tently during the preliminary excursions and during the divergence. It

was not determined whether these oscillations had any effect on the

divergence characteristics of the models; however; the data faired

fairly well with the supersonic data where the oscillations were not

apparent. The model motion; when divergence was reached_ was very

rapid_ with the deflection increasing until the model was bent past 90 °

to the airflow. Some of the models after testing are shown in figure 5-

Supersonic and hypersonic tests.- The supersonic tests at M = 2.0

and M = 3.0 were conducted in the Langley 9- by 18-inch supersonic

aeroelasticity tunnel with air used as a test medium. The hypersonic

tests at M = 7.3 were made in the Langley hypersonic aeroelasticity

tunnel which uses helium as a test medium. The test procedures at

supersonic and hypersonic speeds were the same. The models were mounted

on a sting and the tests were made at a fixed Mach number. The stagna-

tion pressure was increased until the model diverged. A strain gage

on each model was used to correlate the time of divergence with the

recorded tunnel dynamic pressure. Each complete test lasted from 4 to

i0 seconds. There was insufficient time to adjust the model angle of
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attack during a test and several models that were not alined properly

slowly loaded up and failed. They were disca_ded and the tests were
remade with new models.

RESULTS AND DISCUSSION

The transonic and hypersonic divergence data of the present inves-

tigation are presented in figures 6 and 7. E_mperimental results are

compared with results of calculations based on small-aspect-ratio theory,

lifting-surface theory, and strip theory. A _ndimensional divergence

qd

parameter (]'t0_3' in which qd denotes the dynamic pressure at diver-

E\co/
gence, is employed in presenting the results. In figures 6(a) to 6(e),

the divergence parameter is plotted as a function of the apex half-

angle for the different Mach numbers. In figure 7, the divergence

parameter is plotted as a function of Mach n_r_er for the four different

apex half-angles used. In figures 6 and 7 the solid portions of the

curves indicate the range of Mach numbers or _ex half-sngles for which

the theories might be expected to be valid. _us, for small-aspect-

ratio theory the solid curves denote conditions where the Mach angle is

at least twice the apex half-angle, and for strip theory the solid lines

denote conditions where the component of stre_ velocity normal to the

leading edge is supersonic.

Examination of the experimentally determined values of the diver-

gence parameter shows that for a given Mach m_ber (figs. 6(a) to 6(e))

qd increases with decreasing apex angle and for a given apex angle

(fig. 7) qd increases with increasing Mach number. With regard to

the various analytical approaches to be considered, the figures illus-

trate the following facts: Small-aspect-ratio theory is independent

of Mach number and inversely proportional to tan e; strip theory is

independent of apex angle and directly proportional to _; and lifting-

surface theory is a function of both Mach num].er and apex angle.

At M = 0.8 (fig. 6(a)) lifting-surface theory and small-aspect-
o

ratio theory give very similar results. For e = 20 , both indicate

values of qd well above that found experimeILtally and become increas-

ingly high relative to experiment as e decr(ases. Several approaches

were taken in trying to improve the results given by subsonic lifting-

surface theory. In obtaining the aerodynamic forces three different

arrays of control points were used, including one distribution based

on Gaussian techniques. In performing the iterations on the equilibrium

L
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equation the 16-segment system shown in figure 2, with close spacing

near the leading edgej was used to examine the possibility that the

chordwise centers of pressure might be too far removed from the centers

of the forward segments in the lO-segment system. The results were

essentially insensitive to these changes.

For the ranges of Mach number and apex angle for which small-

aspect-ratio theory might be expected to apply in supersonic flow,

values of dynamic pressure at divergence predicted by this theory are

generally above the experimentally determined values. When applied

beyond the range of expected validity, small-aspect-ratio theory pre-

dicts values of qd well below experiment.

For Mach numbers above about 2.0 lifting-surface theory (and strip

theory for supersonic leading edges) predicts the experimental trends

quite well except for the wing having an apex half-angle of 5° . For

this case none of the theoretical approaches used gives adequate agree-

ment, possibly because viscous effects may be quite strong. When strip

theory is applied for subsonic leading edges, the predicted values of

divergence dynamic pressure are generally quite conservative; first-

order piston theory would yield values higher by the factor M/_.

CONCLUSIONS

The results of the analysis of the static divergence of low-aspect-

ratio triangular wings and the comparisons of these theoretical results

with the experimental data lead to the following conclusions:

i. A general iteration procedure is developed for computing diver-

gence dynamic pressures for delta wings using aerodynamic forces given

by small-aspect-ratio theory, lifting-surface theory, and strip theory.

The procedure can be extended to arbitrary planforms and other aero-

dynamic representations.

2. Certain special thickness distributions led to closed-form

solutions for the divergence dynamic pressure when the aerodynamic

forces were given by small-aspect-ratio theory. The closed-form solu-

tions were useful for evaluating the numerical procedures.

3. At a given Mach number the experimental divergence dynamic

pressures of the cantilever delta models of uniform thickness, which

were tested, increased with decreasing apex angle; for a given apex

angle the experimental divergence dynamic pressures increased with

increasing Mach number.



28

4. In subsonic flow lifting-surface theory and small-aspect-ratio

theory give very similar results but predict dynamic pressures at diver-

gence which are high relative to experiment.

5. Values of dynamic pressure at divergence given by small-aspect-

ratio theory vary from generally above experiment in the ranges of Mach

number and apex angle for which the theory is expected to be valid to

well below experiment for conditions outside this range.

6. For Mach numbers above about 2.0 lifting-surface theory (and

strip theory for supersonic leading edges) predicts the experimental

trends quite well except for the wing with an apex half-angle of 5° for

which viscous effects may be important.

Langley Research Center,

National Aeronautics and Space Administration 3

Langley Field, Va., June 9, 1960.
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TABLEI.- SECTIONMOMENT-OF-INERTIACONSTANTK0 FOR

VARIOUSSPANWISESECTIONS

fO x tan c
1

I(x)= g
t03fx _n

t3(x'y)dy = KID 6 _Co) x tan e

when
fx]n13(i ye'ml12]

t(x,') : tOtco/ \ - 7_) _

m Ko

0 1.O000

i .8740

2 .7854

4 .6667

6 .5891

12 .4571

Spanwise section

I I

[__

c

-i.0 0 i .0

yls
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TABLE II.- COMPARISON OF RESULTS OF {XACT AND ITERATIVE

SOLUTIONS FOR VARIOUS CHORDWISE SECTIONS AND

CONSTANT SPANWISE SEC210N

_( (_0)n/31x,y) = tO

qd tan c

Exact

solut ion

_9 -5

37.7

25.08

8.58

Iteration on

curvature

equation (31)

49.2

37.3

24.49

8.54

Iteration on

slope

equation (34)

49.4

37-3

24.48

8.42

Chordwise

section

<C_ !

I I

0 1.0
x

co
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TABLE III.-INTEGRATING MATRIX [Ii_ FOR EQUATION (32)

Common factor, _00_

0.2541 1.9126 -1.3974 6.0090 -6.6564 9.4775 -5.7545 4.8079 -0.4640 1.5115

-0.0529 0.6105 0.1557 3.8041 -4.2750 7.6157 -4.7557 4.4375 -0.3837 1.3056

-0.0250 0.2446 -0.7912 4.4101 -4.8225 8.0083 -4.9398 4.5092 -0.3988 1.3051

-0.0265 0.2671 -1.2230 5.6389 -4.5240 7.8297 -4.8547 4.4808 -0.3930 1.3046

-0.0259 0.2602 -1.1758 3.1415 -5.1805 7.9904 -4.918_ 4.5005 -0.5968 1.5049

-0.0265 0.2642 -1.1982 5.2299 -5.7500 7.4208 -4.8299 4.4779 -0.5928 1.3046

-0.0259 0.2604 -1.1788 5.1662 -5.5893 6.7644 -5.3275 4.5250 -0.3998 1.5051

-0.0265 0.2662 -1.2072 3.2515 -5.7678 7.0629 -6.0985 4.0932 -0.5772 1.5056

-0.0250 0.2510 -1.1355 3.0472 -5.3755 6.5154 -5.4926 3.1463 -0.7451 1.5115

-0.0329 0.5514 -1.5058 4.0660 -7.2568 8.8969 -7.6975 4.6994 -2.0452 1.0246

L
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Common factor, i

-29 48 -36 16 -3 0 0 0 0 0

-3 -lO 18 -6 i 0 0 0 0 0

1 -8 0 8 -1 0 0 0 0 0

0 1 -8 0 8 -1 0 0 0 0

0 0 1 -8 0 8 -1 0 0 0

0 0 0 1 -8 0 8 -i 0 0

0 0 0 0 1 -8 0 8 -1 0

0 0 0 0 0 1 -8 0 8 -i

0 0 0 0 0 -I 6 -18 i0 ]5

0 0 0 0 0 3 -16 36 -48 25
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